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Some elastic materials are capable of susteining finite
equilibrium deformations with discontinuous strains. Boundary-
value problems for such "unstable™ elastic materials often

possess an infinity of solutions, suggesting that the theory

suffers from a constitutive deficiency. In the setting of the
one~dimensional theory of bars in tension, the present paper
explores the consequence.l of supplementing the theory with
further constitutive information. This additional information
pertains to the surface of strain discontinuity and consists of a
*kinetic relation™ and s criterion for the “initiation"™ of such a
surface. We show that the quasi-static response of the bar to a
prescribed force history is then fully determined. 1In
particular, we observe how unstable elastic meterials can be used
to model macroscopic behavior similar to that associated with

viscoplasticity.
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1. Introduction

Bodies composed of certain types of homogeneous elastic materials can
be finitely deformed to equilibrium states in which displacement gradients,
strains and stresses suffer jump discontinuities across special surfaces.
Elastostatic fields of this kind arise, for example, in continuum mechani-

cal treatments of stress-induced phase transformations in solids [1,2].

When such jumps in displacement gradient occur during quasi-static,
isothermal motions, the balance between the rate of increase of stored
energy and the rate of work of external forces associated with convention-
ally smooth deformations of elastic bodies no longer holds. This balance is
replaced by one which includes an additional effect that may be interpreted
as the rate of work of a fictitious "driving traction" acting on the moving
surface of discontinuity [3]. The driving traction is formally related to
the notion of a "force on a defect” introduced by Eshelby [4] and discussed
by Rice [5].

The altered energetics of finite elastostatic fields involving strain
jumps suggest that such fields might be used to model certain types of dis-
sipative behavior in solids. The circumstances, in fact, are reminiscent in
some respects of those present in the classical theory of flows of ideal
fluids in which shock waves are present. In the latter subject, shocks
account in an idealized way for the neglected dissipative effects of visco-
sity and heat conduction; see p. 322 of [6]. Because of this similarity, we
refer to surfaces bearing jump discontinuities in the displacement gradient

in an elastostatic field as "equilibrium shocks"

Not all elastic materials are capable of sustaining deformations with
equilibrium shocks. Those that do have this capability are sometimes called
unstable materials; they necessarily lead to differential equations of
equilibrium that fail to remain elliptic at all deformations [7]. This in
turn leads to a massive loss of uniqueness of solution for the boundary
value problems of elastostatics, suggesting the need for additional consti-
tutive assumptions that will select from among the many possible equili-
brium states that one which is preferred by the body. One such additional
constitutive postulate asserts that the material is conservative at all of
its particles, including those on shocks, so that the body prefers that

equilibrium state which renders the appropriate energy functional an abso-
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lute minimum. With this assumption in force, the driving traction acting on
any equilibrium shock necessarily vanishes [8,9], the conventional balance
between work and energy is preserved, and no dissipation takes place. 1In
this conservative setting, elastostatic fields with shocks have recently

received much analytical attention; see, for example, [1],[2],[9-16].

In two recent papers [17,18], we have discussed an example in order to
illustrate an alternative constitutive postulate. The problem treated in
[17,18] involves a finite, plane deformation of an infinite medium contain-
ing a circular cavity. A uniform circumferential traction is applied to the
cavity wall, and the displacement is required to vanish at infinity. For
the class of incompressible, isotropic elastic materials considered, the
resulting twisting deformation may exhibit a circular equilibrium shock
concentric with the cavity. In quasi-static motions of the body involving
such equilibrium states, the relationship between the applied torque and
the twist at the cavity wall - i.e., the macroscopic response - is in gen-
eral hysteretic. We show in [17,18] that if a certain maximum-dissipation
postulate is used as the supplementary constitutive assumption, the macros-
copic response mimics that associated with rate-independent elastic-plastic

behavior,

Our purpose in the present paper is to discuss supplementary comstitu-
tive models for elastic fields capable of sustaining equilibrium shocks in
more generality. The principal new feature introduced here is a "kinetic
relation" analogous to those arising in microstructural models of plastic
behavior formulated in terms of internal variables [5,19,20]. In our cir-
cumstances, this relation takes the form of a constitutive law connecting
the driving traction acting on a moving shock with the shock velocity dur-
ing a quasi-static, isothermal motion. We show that appropriate choices of
the kinetic relation 1lead to visco-plastic macroscopic response, and we
recover conservative (minimum-energy) response as well as rate-independent

elastic-plastic behavior as special or limiting cases.

When there is an equilibrium shock in the body, the kinetic law governs
its evolution. However a separate criterion -- an initiation or nucleation
criterion -- 1is required in order to signal the initial appearance of the
shock. This too will be discussed in the following.
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elpe-

For simplicity, we work here in the context of a one-dimensional model
for extensional deformations of an elastic bar. Our setting is thus essen-
tially that of Ericksen [10] in his discussion of one-dimensional deforma-
tions with strain-jumps, except that we consider bars whose cross-sectional

- area varies with position. The special case of the upiform bar turns out to

be exceptional in certain important respects.

After introducing in the following section the class of elastic materi-
als to be considered, we investigate equilibrium states with a single shock
in Section 3. Sections 4 and 5 are concerned with the energetics of quasi-
static, isothermal motions of the bar and the admissibility of such motions
according to the second law of thermodynamics. We introduce the notion of a
kinetic relation as well as a shock initiation criterion in Section 6, and
in Section 7 present examples to illustrate the possibilities offered by
the theory.

An approach of the type put forward here may have application to the
modeling of the mechanical response of shape-memory alloys {21}, to contin-
uum descriptions of the effect of the presence of a "damaged phase" on the
behavior of solids, and to transformation toughening in ceramic composites
[22]).

2. Preliminaries

Consider a bar composed of a homogeneous elastic material, which in its
reference configuration occupies the interval [0,L]. Let x denote the coor-
dinate of a generic point of the bar in this configuration. If the refer-
ence cross-sectional area of the bar at x is A(x) > 0, it is assumed that
A€ C2[0,L]. We also assume that A(x) increases monotonically with x, so

that

A'(x) >0, 0<xs< L. (2.1)
We shall show later that the special case of the uniform bar (A’'(x) = 0) is
exceptional in certain respects; it is temporarily excluded from consider-

ation.

A deformation of the bar is characterized by an invertible mapping
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y = x + u(x), C<xsL, (2.2)

which subjects the particle at x to a displacement u and carries it to a
new location y. There is no loss of generality in taking the left-hand end
of the bar to be fixed; if § denotes the elongation of the bar,

u(L) = §, u(0) = 0. (2.3)

It will be necessary in the following to consider displacement fields which
are less than classically smooth, and accordingly we allow for the possi-
bility that, although u is continuous on [0,L], there is a number s € [0,L]
such that (i) u is continuously differentiable on [0,s] + [s,L], (ii) u is
twice continuously differentiable on (0,s) + (s,L), and (iii) u’ suffers a
finite jump discontinuity across x = s. The strain ¢ at a particle x » s is
defined by

e(x) = u' (x) > -1, 0

IA
®
In
Ly
%
1
e

(2.4)

the first inequality in (2.4) assures the invertibility of the mapping
(2.2).

Let o(x) be the nominal stress field in the bar. Equilibrium in the
absence of body forces requires

o(x)A(X) = F = constant, 0<sx=<1L; (2.5)
F denotes the force in the bar. Clearly, o € CZ[O,L].

The material is characterized by an elastic potential W whose value
is the strain energy per unit reference volume. We assume that W is defined
on (-1,») and that it is twice continuously differentiable there. The
stress response function of the bar 8(e¢) is given in terms of W by

() = W (e), 1<e<w, (2.6)

so that by (2.5), the stress at x is
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B(e(x)) = F/A(x), 0<x<L, x»s. (2.7)
If F 1is given, the force problem consists of finding a displacement field
u of the requisite smoothness conforming to (2.7), (2.4), (2.3),. If § |is
' given, the elongatjon problem requires the determination of a constant F
and a displacement field u satisfying (2.7), (2.4) and (2.3). We shall be

concerned only with the force problem.

i From a thermodynamic viewpoint, the present analysis assumes that con-
ditons are isothermal. The elastic potential W coincides with the Helmholtz
free energy of the material at the given temperature, while the associated

Gibbs free energy G expressed in terms of strain is
G(e) = W(e) - G(e)e , l<e<w, (2.8)

e In this paper we restrict attention to materials whose stress response
o function 3(:) first 1increases with iIncreasing ¢, then decreases, and
A finally increases again; see Figure 1. Specifically we suppose that there
‘ are positive numbers ¢y and ¢, such that 5'(eM) - 3'(em) - 0, 3'(5) > 0 for

-1 <e<ey, G'(e) <O for ey < e < ey, and 8'(e) > 0 for ey < ¢

Moreover,
4
oy = 5(ey) >0, opwB(ey) >0, b6(e) mw,  G(-1) = -a. (2.9)
"
‘Q‘ Note that these materials are of "Baker-Ericksen type" in the sense that
‘ﬁ G(e)e > 0 for em0. For our purposes, it 1is sufficient to consider only
®

tensile stresses, so we restrict attention henceforth to o > 0.

A Although G(e) is not invertible on (-1,®), its restrictions to certain
: subsets of this interval do have inverses, and these play a major role in

the analysis to follow. Let ?1, ?é, 23 be the functions inverse to the

restrictions of 3(5) to the respective intervals (-1,¢y], [eMs€p], and

‘o ’e

(¢m,®); these inverse functions are defined on (-=,0q], [op,oq] and (omr)

& respectively. Each function ?i is continuous on its domain of definition,
| and is continuously differentiable on the interior of that domain. Finally,
let o, be the unique number in the interval (oy,0yq) for which the two
shaded regions in Figure 1 have equal areas. In terms of the Gibbs free

energy,
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G(€3(0.)) = G(€1(ac));

3. Equilibrium States
If e(x) is a solution of (2.7)

1 in fact

A
o { Sp(F/ac),
2q(F/AX)),

where p, q = 1, 2, or 3. Moreover,

domain of €

with the help of (2.1) that e(x) =

--7--

(2.10)

og. 1s the Maxwell stress of the material.

of the requisite smoothness, it follows

€n, €M for all x in (0,s)+(s,L), and that

0 < x < s,

(3.1)
L,

7]
A
»
|

for 0 < x < s, F/A(X) must 1lie in the

P’ while for s < x < L it must lie in the domain of ?ﬁ. On using

; (2.1) and the definition of the inverse functions ?i' one can show that

‘ this is equivalent to requiring

(s,F) € 3pq,

where the Spq's are sets in the (s

\ 311 = ((s,F) | 0<s <L,
! 350 = {(s,F) | 0<gs<L,
: 333 ~ ((s,F) | 0<s <L,
. S12 = ((s,F) | 0 <s <L,
391 = {(s,F) | 0 <s <L,
353 = ((s,F) | 0 <s <L,
332 = ((s,F) | 0<s <L,
333 = ((s,F) | 0 <s <L,
313 = ((s,F) | 0 <s <L,

(3.2)

,F)-plane defined as follows:

< oMAp ),
ophy < F < ophp ),
amAM < F 1},
ouhy < F < oyag),
opA(s) £ F < oqAp ), (3.3)
onhy < F < opnl,
opAM £ F £ oyA(s) ),
opA(s) £ F < oyA(s) ),
omhy S F < oAy

Conversely, if (s,F) € 3pq for some p,q, then (3.1) is a solution of (2.7).

Observe that the sets 355, 317, 323, 313 are non-empty if and only if the

- constitutive law and the taper of the bar are such that

OmAM < IMAR-
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For a given material, (3.4) will certainly be valid if the taper in the bar
is slight enough; we assume throughout that (3.4) holds.

For a given F, all solutions of the force problem (2.7), (2.4), (2.3), !
may now be found by integrating (3.1). They are

u(x) = qu(x;F,s), 0<x=<1L, (s,F) € 3pq’ P.q9q = 1,2,3, (3.5)
where
4 Fx
?p(F/A(e)) d¢, 0<x<s,

. b ir‘

qu(x,F,s) -4 . N (3.6)
, Sp(F/A(E)) d€ + J SqF/A(E)) &8, s <x s L. ;
f | ® :

For p = q, (3.5), (3.6) yield the special solutions

X

u(x) = Up(x;F) = Upp(x;F,s) = l Ep(F/A(E)) ¢, (3.7) !

which are independent of s and classically smooth. On the other hand, for
P~ q, (3.5, (3.6) provide six one-parameter families of solutions to the
' force problem, with parameter s. The strain for 0 < x < s is associated
with the pth branch of the stress-strain curve, while that for s < x < L is
associated with the qth branch; the discontinuity at x = s is called a
"(p,q)-shock".

According to (3.3), (3.4), there exists at least one solution wu(x) to

the force problem corresponding to every given value of F. If either

- -

‘ 0 £ FsopAy or F < oyAy, this solution is unique and it is smooth.
However, for values of force in the intermediate range op A, < F < oyAy,

- there are infinitely many solutions.

Observe from (3.6), (3.7) that as the shock recedes to either one of
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the two ends of the bar, each weak solution "merges" with one of the smooth

solutions:

Lig Upq(x:iF,s) = Ug(x;F),
g *(3.8)
Es kip Upq(x;F,8) = Up(x;F).

D This suggests that the definitions of all of the qu s, as functions of s,
‘ be extended to s = 0 and s = L by setting

qu(x;F,O) - Uq(x;F).

0 : (3.9)
s, ) - .
5 qu(x,F,L) Up(x,F).
i
Finally, one can verify that qu(-;F,sl) and Up,.(+;F,sp) are distinct
355 whenever (p,q) » (m,n), 0 < s; <L, and 0 <sy) <L:
B
179,
?i; qu(-;F,sl) w Upn(*;F,s9) if (p,q) » (myn), 0<s; <L, 0<sy)<L,
. - (s1,F) € qu’ (s9,F) € 3, . (3.10)
s
’v‘b
‘}

We turn next to the relation between the force F and the elongation §,

?; which we call the macroscopic response of the bar. By (2.3)1, (3.5),
(3.6), these quantities are related by

o § = qu(F,s), (s,F) € qu' p.q = 1,2,3, (3.11)
where

i qu(F,s) - qu(L;F,s), (s,F) € Spq, p.q = 1,2,3. (3.12)
It can be shown that, if p = q, qu(F,s) is a monotonic function of s for

ﬁ% each fixed F, The macroscopic response corresponding to any one of the

smooth solutions is independent of s:

§ = App(F,s) = 8, (F). (3.13)

)

.:.

&% For each (p,q), (3.11) maps the set qu of the (s,F)-plane onto a set

,!

ﬁg €pq in the (§,F)-plane: |
0
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611 = { (§,F) | § = A1(F), F < opAp ),

Goo = { (§,F) | 6§ = Ap(F), opAy S F < opay ),

€33 = { (§,F) | § = A3(F), ogdy S F ),

G190 = { (8,F) | 819(F,L) £ 8§ £ 812(F,0), ophAy < F < opAp ),

6y1 = { (8,F) | 891(F,0) £ 6§ < 891(F,L), o0pA(s) S F < omhp ), (3.14)
6y3 = { (8§,F) | 823(F,L) < 6§ < 493(F,0), opAy < F < opag ),

639 = ( (8§,F) | A35(F,0) < 6 < 839(F,L), opAy < F < opA(s) },

€31 = ( (8§,F) | 439(F,0) < 6§ < A31(F,L), omA(s) < F < ayaA(s) ),

613 = ( (6§,F) | A)3(F,L) < 6§ < 813(F,0), opAy < F < oyag ).

Sketches of the sets Bpq are shown in Figure 2. Observe that €] and G313
are curves with positive slope, while €95 is a curve with negative slope.
Note also that €37, €599 and €33 are not connected. The sets qu, P=q,
correspond to various regions linking these curves. The dashed curves in
these regions are curves of constant s. For p » q, the mappings

qu - qu are one-to-one; this is obviously not the case when p = q.

In summary, for sufficiently small and sufficiently large values of the
force F, the force problem has a unique solution; this solution happens to
be smooth. However, for intermediate values of F, we encounter a major
breakdown of uniqueness. In fact, in the intermediate range of F, there are

multiple solutions even if the pair (§,F) is prescribed.

4, Dissipation, shock driving traction, admissibility.

We now turn our attention to quasi-static motions of the bar in which,
at each instant t, the displacement field u(e,t) corresponds to one of the
equilibrium states constructed in the preceding section. Let F(t), tp £ ¢t
£ t;, be a given continuous, piecewise continuously differentiable force
history. Suppose first that F(t) < opAp for all t in [tg,tj]. Then by
(3.3, (3.7), u(x,t) is necessarily given by the smooth field

u(x,t) = Uj(x;F(L)), 0<x<L, tg£t<t, (4.1)

associated with the first branch of the stress-strain curve. Next, suppose

that F(t) > oyAy for all t. Then (3.3), (3.7) yield
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u(x,t) = Us(x;F(t)), 0sxsL, tg=ts=rty, (4.2)

and again the field is smooth. Finally, assume that ojA, < F(t) < oyAy for
all t in [tg,t]. Then u(x,t) must have the form

u(x,t) = Up(eyq(e) (X:F(E),5(8)), 0<x<L, tg<t< ey, (4.3)

To begin with, we assume that

(1) p(t) and q(t) are piecewise constant on [tg,t]], each taking one of
the values 1,2,3 there, with p(t) » q(t);
(ii) s(t) 1is piecewise continuous on [tgp,t1];
(iii) (s(t),F(t)) € 3p(t)q(t) for tg < t < t3.

The requirement p(t) = q(t) does not preclude the occurrence of smooth
fields for forces F(t) in this intermediate range; such fields occur when

either s(t) = 0 or s(t) = L.

For quasi-static motions of the form (4.1) or (4.2), the assumed
smoothness of F(t) and the representations (3.7) guarantee that u(x,+) is
continuous and piecewise continuously differentiable on [tg,t]] for each x.
In order to discuss the more complicated issue of the smoothness in time of
motions described by (4.3), it is convenient first to introduce the notion
of a transition instant: an instant ty € (tg,t}) is a transition instant if
(P(ty-),q(ts-)) » (p(tyt+),q(ty+)). At a transition instant, the branches of
the underlying stress-strain curve involved in the deformation (4.3) change

from the p(t-)th and q(t-)th to p(t+)th and q(t+)th.

It is natural to require that u(x,+) as given by (4.3) also be continu-

ous on [tg,t;] for every x, 0 < x < L. Let tyx be in (tg,t1), and assume
that u(x,+) is continuous at t,. Suppose first that t, is pnot a transition
instant. Then p(t-) = p(t+) = p, q(t-) = q(t+) = q, so from (4.3),

u(xrt*+)'u(x!t*-) - qu(x;F(t*),S(t*"')) = qu(x;F(t*),S(t*')) =0 (4‘&)

for every x in [O,L]. Now p » q, and the definition (3.6) of U

(4.4) cannot hold under this circumstance unless

Pq shows that
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S(tyt) = s(tg-) if ty is not a transition instant. (4.5)
"
o,
Thus s(t) is necessarily continuous at all times except possibly at transi- f
tion instants. Now suppose that ty is a transition instant. Let p(ty-) = p, "

q(tx-) = q, p(ty+) = m, q(ty+) = n; by (4.3), continuity of u(x,+) at t=ty \
then implies that :

Upq(XiF(tx) ,s(tat)) - Upn(xiF(ty),s(ty-)) = 0 (4.6) Ry

for all x in [0,L]. Since ty4 is a transition instant, (p,q)* (m,n), and :
(3.10) shows that (4.6) cannot hold unless at least one of the numbers -
s(ty+), s(ty-) takes either the value 0 or the wvalue L. More detailed }

examination of (4.6) shows that one of the following four mutually exclu-

sive possibilities must hold: ﬁ:
S

S(te+t) = s(tx-) = 0, and q(te+) = q(ts-), if (4.7a) N
S(ts+) = s(tg-) = L, and p(ty+) = p(tw-) ty is a trans-  (4.7b) o
s(tst) = L, s(tg-) = 0, and p(ts+) = q(tx-),| ition instant.  (4.7c) ¥

. s(tyt) = 0, s(ty-) = L, and p(ty-) = q(tyt), (4.74) M
g

Thus (4.5), (4.7) are necessary for the continuity of wu(x,+) at an ‘{
instant ty in (tg,ty); if either ty = tg or ty = t1, (4.5), (4.7) continue 'E
to be necessary, provided the appropriate + or - is deleted in the argu- ;
ments of s, p and q. Moreover, one can show that, in the presence of the 1
assumed smoothness of F(t), (4.5), (4.7) (or their modified wversions when ﬂ
ty+ 1is an end-point of [tg,t;]) are sufficient for the continuity of u(x,*) ':
at t = ty as well. %i
The argument above shows that discontinuities in s(t) can only occur at :t
transition instants t,; if there is such a discontinuity, the shock ‘ﬁ
X = s(t) recedes to one end of the bar as t + ty- and then advances into }
the bar from the other end as t increases from ty. When s(t) is continuous :
at a transition instant ty, necessarily s(ty) = O or s(ty) = L. Thus a ::
transition from a discontinuous strain field involving branches p and q of g?
the stress-strain curve to one involving branches m and n, with (p,q) = ?

- (m,n), always takes place through a smooth field. A further consequence of N
the conditions (4.5), (4.7) is that a shock cannot emerge instantaneously \

from a smooth field at an interior point of the bar. Observe that these
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restrictions on the motion x = s(t) of the shock arise from purely kine-
matic requirements, together with the assumption that the bar 1is strictly
monotonically tapered. Further restrictions on the shock motion will arise

later.

Finally, we require that s(t) should be piecewise continuously differ-
entiable between every pair of successive transition instants. This will
assure that u(x,+) is piecewise continuously differentiable on [to.t1].
A regular instant during a quasi-static motion is a time t at which ﬁ(t)
exists and, if the motion is of the form (4.3), §(t) exists and p(t) and

q(t) are continuous.

Figure 3 describes an example in the (x,t)-plane for which the shock
history involves transition instants of each of the four kinds listed in
(4.7a-d). The encircled numbers in Figure 3 refer to the branches of the
stress-strain curve appropriate to the two sides of the shock at various

times.

The elementary quasi-static motions (4.1),(4.2) and (4.3) may be linked
together on successive time intervals (tg,.t1],(t1,t2], and [ty,t3] to form
a compound quasi-static motion on [tg,t3], provided the resulting displa-

cement u(x,+) is continuous on [tp,t3] for every x.

Next we consider the energetics of a quasi-static motion. The total
strain energy stored in the bar in an equilibrium state with displacement
qu(x;F,s) is

s L
Epq(F,s) = 1 W(EH(F/A(X))) A(x) dx + J W(Eq(F/A(X))) A(x) dx,
s

P.q = 1,2,3, (s,F) € 3 4.8)

PqQ-

During a quasi-static motion of the form (4.3), the energy stored in the
bar at time t is

E(t) = Ep(t)q(t) (F(t),s(t)), tg < t < ty. (4.9)

At a regular instant during this motion, we define the rate of dissipation
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d(t) to be the difference between the rate of external work and the rate of

increase of stored energy:

d(t) = F(e)8(t) - E(e), (4.10)
where, by (3.11), the elongation §(t) of the bar is

§(t) = Ap(r)q(r) (F(t),s()), to £ t < £, (4.11)

and qu is given by (3.12). A direct calculation based on (4.8)-(4.11)
yields

d(t) = [[W(e) - a(e)e]l als(e)s(D), (4.12)

for each regular instant during the motion. Here [[g]] denotes the jump at
x = s(t) of the function g(x): [[g]] = g(s(t)+) - g(s(t)-). It follows from
(4.12) that d(t) = 0 if the motion happens to be smooth at time t, so that
all jumps in (4.12) vanish. In general, however, d(t) » O for motions of
the type (4.3). For motions of the type (4.1) or (4.2), the dissipation

rate of course vanishes identically.

Let f(t) be defined by
£(t) = [[W(e) - a(e)el]t, o<t <y, (4.13)

and by £f(t) = O for motions of the type (4.1) or (4.2).Since by (4.10),
(4.12), (4.13), at a regular instant

E=F§ + (-£ A(s)) §, (4.14)

it follows that one can view -f(t) as a traction applied by the shock on
the bar, or equivalently, +f(t) as a traction applied by the bar on the
shock. The general notion of a "thermodynamic force” or "driving force” on
a "defect" was introduced by Eshelby [4] . Equation (4.13) is a special

case of a formula for the force on a phase boundary given in [4] and dis-

cussed by Rice (5]; see also [3]. We refer to f as the "ghock driving trac-
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tion". Observe from (2.8), (4.12), that the shock driving traction coin-
cides with the jump in the Gibbs free energy across the shock:

£(t) = [[G(e(x,eN]]T. (4.15)

On using (2.10), one obtains from (4.15) the following expression for the J
shock driving traction:

£(t) = £5(e)q(e)(B(E)), (4.16)

. where T(t) is the nominal stress at the shock,

-
"

G(t) = F(t)/A(s(t)), (4.17)

. and the functions qu are determined by the material; they are given by

X €q(a)
v ] qu(a) -J 5(5) de - a[?q(a) - ?p(a)), opg £ 0 <oy, P.Q = 1,2,3. (4.18)
&)

The following properties of the functions qu will prove to be wuseful.
First, note from (4.18) that

e e e a e

N

fpq(0) = - f4p(9), Op£0<oy, pP,q=12,3. (4.19)

Second, differentiating (4.18) yields

Q
B
IA

0<0M, P> q.

IA

£'5q(0) = &5(a) - €q(0) 0, ogpsSoc<oy, p=4q, (4.20)

A

Q
=]
IA

o < oy, P <qg.

Next, on recalling the properties of the inverse functions ?i' one can

PR

e -

readily verify from (4.18) that

£31(0p) < 0, £ -0, £ >0,
I 31(%n 31(0¢) 31(on) } %.21)

:1 f21(0M) - 0, f32(0m) = 0.
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Integration of (4.20) with the help of (4.21) then gives the following use-
ful alternative formulas for qu

o I
£32(0) = I (€3(r) - (7)) dr, op<o<oy,
m
g
£31(0) = j (83(r) - & (1)) dr, op<osoy,  t (4.22)
e
M
£21(0) = - | (€(r) - 21(1)) ar, op<osoy;
g s

the other qu's are related to these through (4.19). Observe from (4.22)
that f37, f39 and fo1 are monotonically increasing functions on (op.om) -
Moreover, f32 is non-negative on 1its domain of definition while fo1 is

non-positive; on the other hand f3] changes sign once:

>0, 0,.<0<oNM,
f32(a) { m M
=0, o=0p,
>0, o.<o<oy,
f31(a) = 0, o=0., > (4.23)
<0, op<o<o.,
-0, o=0\,
£57(0) M
< 0, opso<oy J

A quasi-static motion is said to be admissible if the rate of dissipa-

tion is non-negative:
£(t)s(t+) > 0, to St < ty. (4.24)

On adapting the thermodynamic arguments given in [3] to the present one-
dimensional context, one can show that (4.24) is equivalent to the Clau-
sius-Duhem inequality when the temperature is constant in space and time.
Observe that (4.24) holds with equality if the shock is stationary or if
the shock driving traction vanishes; the latter alternative occurs if and

only if either (i) the field is smooth or (ii) (P,q) = (3,1) or (1,3) and
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the stress at the shock is the Maxwell stress. All motions of the type

(4.1) or (4.3) are trivially admissible. In general, (4.24) is to be viewed

as a restriction on allowable quasi-static motions. Note from (4.11),
(4.24) that a quasi-static motion is admissible at an instant t if and only
if the Gibbs free energy of a particle at the shock front does not increase
as the particle crosses the shock. In the following section, we investigate

the consequences of admissibility.

5. Consequences of admissibility.

Consider an admissible quasi-static motion of the form (4.3) in which
p(t) = p = constant, q(t) = q = constant for tg < t < t;. If, for example,
p=3, q=1, then by (4.20), (4.12) and (4.19), admissibility requires that

s(t+) 2 if 5(t) > o,
S(t+) < if 3(t) < o, (5.1)
F(e+)8(t+) 2 0 if 3(t) = o,

where &(t) = F(t)/A(s(t)) 1is the stress at the shock. The curve in €31
given by F = o0,A(s), § = Aj1(0.A(s),s) is called the - well urve;
points on this curve correspond to equilibrium fields in which the stress

at the shock coincides with the Maxwell stress.

Every quasi-static motion determines a path in the (§,F)-plane. For the
motion considered above, this path lies in the set €3; (see Figure 2), and
- through (5.1) - admissibility restricts the possible directions of the
path. Figure 4(a) illustrates the permissible directions of departure of
such a path from various points in 637;. The dashed curves in the figure
represent lines s(t) = constant; for motions whose paths lie along a curve
s = constant, there is no dissipation. The same is true for motions whose

paths lie on the Maxwell curve.

Similar considerations apply to motions of the type (4.3) for other
values of the pair (p,q). For p=1, gq=3, there is also a Maxwell curve, but
for the remaining possible choices of (p,q), this is not the case. Figures
4(b)-4(f) show the admissible directions for the remaining choices of
(p,q). In Figures 4(a) and 4(b) and hereafter, we assume that

I a):Ja*s ,&k R IR AT AT W RNS

AN \fs(f.\f\.'\f J-"‘-" . AN e -:f\-\e"d'" AN

RN

Bk £ Wk

a”



NN

4,
" ‘a W, ..n":: ::' .Q.."‘!"'\" "4\

--18--

on/0c < Ap/Ay , 0c/oM < Ap/Ay . (5.2)

These inequalities, which imply (3.4), certainly hold for a given material
if the taper of the bar is slight enough.

Admissible directions for compound motions can also be read off from

Figure 4.

From Figure 4(a), it is clear that transitions of the form €;;-€3q,
€33~2€11, €33+C37, €G31~C33 are all possible; similar inferences may be drawn
from Figure 4(b). The situation 1is different, however, for admissible
motions that involve branch 2 of the stress-strain curve. For example, Fig-
ure 4(c) shows that, while the transition €y1#€1; 1is admissible, the
reverse transition is not; similarly, 6592657 is possible, but €p1+C;y is
not. Parallel conclusions follow from Figures 4(d)-4(f). In general, one
can readily show that admissible quasi-static motions proceed in such a way
as to diminish - or at least not increase - the length of the portion of

the bar bearing strains associated with branch 2 of the stress-strain

curve.

The above considerations suggest that the totality of all equilbrium
displacement fields be divided into two disjoint parts A and U as follows:
let

A = (Uyq(+;F,8) | (s,F) € 3pq, p=1o0r 3, q=1or 3, (5.3)
U = (Upq(+;F,s) | (s,F) € Spq+ either p = 2 or q = 2).

Thus the fields in A correspond to those equilibrium states that involve no
strains associated with branch two of the stress-strain curve in Figure 1;
U contains all remaining displacement fields. Consider a compound admis-
sible motion whose displacement field at the initial instant belongs to A.
Figure 4 suggests that displacement fields for this motion at all later
times must also belong to A. Indeed, if at some later instant the corre-
sponding displacement field were in U, the length of that portion of the
bar carrying branch-2 strains would necessarily have increased at some ear-
lier time, contradicting the assumed admissibility of the motion. Thus
states in U are not accessible from states in A during an admissible quasi-

static motion; in particular, a motion that commences at the unloaded,
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unextended state F = § = 0 can never enter the collection U of states

involving strains on branch 2 of the stress-strain curve.

Let d(t) be the rate of dissipation in a quasi-static motion at each

regular instant t; the total dissipation D associated with the motion is

t1
D -J d(c) dc . (5.4)
t:O

It 1is possible to show that all admissible quasi-static motions
whose total dissipation is sufficiently large must ultimately enter the
collection A, where - in view of the discussion above - they will
subsequently remain. We shall not prove this result here; see [17,18] for

proofs of closely related propositions,

One may thus regard the collection A of equilibrium fields as an
attractor for admissible quasi-static motions; the set U may be thought of
as unobservable. From here on, we shall be concerned only with motions
through equilibrium states that can be reached admissibly from the state F
= § = 0; as a result, we need no longer consider states that include

strains associated with branch 2 of the stress-strain curve.

In reaching the conclusions described above, the fact that the cross-
section of the bar is tapered, rather than uniform, is crucial. For a uni-
form bar, the implications of admissibility are much weaker than those
described above. The distinction can be appreciated with the help of Figure
5, which shows the sets qu for the uniform bar. Observe from the figure
that the sets €77, €, and 633 corresponding to smooth strain fields are
now connected, each to the next, in contrast to the corresponding sets for
the tapered bar as shown in Figure 2 or Figure 4. Thus for a tapered bar,
one cannot move quasi-statically from states in €;; to states in Gy, by
utilizing smooth fields alone; such a transition would demand the presence
of fields with equilibrium shocks, whigh - by the discussion above - |is
forbidden when admissibility is imposed as a requirement. On the other hand
Figure 5 shows that, for the uniform bar, one can construct quasi-static
motions involving only smooth - and therefore trivially admissible - fields
that pass from states in 6] to states in €655. Thus while admissibility
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forces the collection U of equilibrium states involving branch 2 to be
inaccessible and transient in the presence of sufficient dissipation in the
case of the tapered bar, it does not deliver the corresponding results for

the uniform bar.

6. Kipetic relations and shock initiation.

The specification of either the force history F(t) or the elongation
history 6(t) during an admissible quasi-static motion is not sufficient to
determine the motion uniquely unless the field is smooth at each instant.
This suggests that the constitutive characterization of the material must
be supplemented if the response 1is to be determinate when equilibrium

shocks are present.

In the macroscopic F-§ relations (3.11)-(3.13) pertaining to equili-
brium states with shocks, the shock location s may be viewed as an "inter-
nal variable". Indeed, the formalism used in internal variable theories of
plasticity such as those developed in (5], [19] and [20] has a counterpart
in the present context. Because we do not need this formalism here, we do
not discuss it in detail; it has been described in a related setting in
[17] and [18]. A common ingredient of such microstructural theories of
inelastic behavior is an evolution law, or "kinetic relation", relating the
time rate of change of the internal variable to the corresponding "thermo-
dynamic force"”. We adopt this point of view here by postulating a relation
between the shock driving traction f(t) of (4.13) and the shock velocity
s(t) that must hold during a quasi-static motion. This relation is deter-

mined by the material and is regarded as given.

Suppose we have an admissible motion of the form (4.3). Recall the
relation (4.12) between the shock driving traction f£(t) during such a
motion and the stress at the shock 7(t), and let

= max f,,(0), = min f,,(0), (6.1)
Mpa 7, 255, P "Pq =, 20onPd

be the maximum and minimum values of the material functions qu introduced
in (4.18). For each p,q = 1,2,3 with p » q, we assume there is a given
function qu defined on (mpq,Mpq)x[O,L] and such that, between successive
transition instants during the motion, the kinetic relation
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$(t) = Vp(e)q(r) (£(),s(t)) (6.2)

holds. If the functions qu(f,s) are independent of s, we say that the
kinecic relation is homogeneous; we assume this to be the case henceforth.

We mnow impose on each kinetic response function qu the requirement

that

qu(f)f =20 , mpq < f < Mpq' 0<s <L (6.3)

by (4.24), (6.2), this assures that all quasi-static motions compatible
with the kinetic relation are admissible.

We also require that, for each p,q with p » q,

qu(f) - - qu(~f) for - Mpq < f < - Mpq - (6.4)

(Note that, by (4.9), (6.1), ngp = -Mpq.) The motivation for (6.4) lies in
the fact that the kinetic response functions qu are to depend only on the
material and not on the geometry of the bar under consideration. In partic-
ular, they must apply in the case of uniform bars, for which (3,1)-shocks
and (1,3)-shocks are mirror-images of one another if the stress at the

shock is the same for both.

Since the shock driving traction £(t) during the motion is related to
the stress at the shock &@(t) by (4.16), the kinetic relation relation (6.2)

may be expressed in terms of o instead of f:

$(t) = vp(e)q(t) (T(E)) = Vh(eyq(e) (F(E)/A(s(E))), (6.5)

where the material function Vpq is defined by
qu(a) - qu(qu(a)), op < o < oy. (6.6)

By (4.16), (4.19), properties (6.3), (6.4) of the qu's yield corresponding

properties of the v, ,'s:

Pq
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qu(a)qu(a) >0, op < 0 < oy, (6.7) ’
vqp(a) - - qu(a), op < 0 < oy. (6.8) \

Between two successive transition instants, p(t) and q(t) are both con-
stant: p(t) = p, q(t) = q ; for a force-controlled motion in which F(t) is
given, (6.5) is then a differential equation governing the location x =

s(t) of the associated (p,q)-shock.

For definiteness, consider a program of loading in which the given

force history F(t), 0 < t < T, begins at F(0) = 0, so that initially 6(0) = )

0 as well, and suppose that F(t) increases with t to a final value F(T) >
¢ omAy- To describe the possible quasi-static motions associated with F(t),

we shall trace the corresponding force-elongation histories in Figures

- Wy e e e

6(a,b), which contain the information in Figures 4(a) and 4(b) pertaining
to equilibrium states with (3,1)- and (1,3)-shocks. (Recall from the pre-

ceding section that states with either p = 2 or q = 2, or both, can never

be reached admissibly during a force history of this kind, so that Figures
4(c)-4(f) need not be consulted.) Reference to Figure 6 shows that, as F(t)
. increases from zero to the value OmAp at, say, time tj, the associated
quasi-static motion is necessarily smooth and of the form (4.1). During
this period, the force-elongation relation corresponds to the curve OA in
. either Figure 6(a) or 6(b), and according to (3.11)-(3.13), it is given by

ey rasacn

§(t) = 81(F(t)). (6.9) ]

As F(t) increases beyond opA;, equilibrium states involving (3,1)-shocks )
become available (Figure 6(a)), but as indicated by the arrows in the fig-
ure, none can be reached admissibly until the time, say tjp, at which F(tj)
= 0c.Ap. Thus on the time interval [tl-tZ]- the motion is of the form (4.3),
with u(x,t) = U3(x;F(t),0) = Up3(x;F(t),L) = Uj(x;F(t)), the displacement
field remains smooth at each instant, (6.9) remains in force, and the for-
ce-elongation curve continues along the arc ABC. For t > ¢ty and F(t) > X
oAy, the situation changes. Let F(t3) = o.Ay; when ty < t < t3, there are
two alternative possibilities, each consistent with admissibility: either L
the deformation continues to be smooth at each instant, with u(x,t) =
Up(x;F(t)), or a (3,1)-shock is initiated at the end x = 0 of the bar at a \
certain instant t, 2> t5 and begins to advance into the interior in E

accordance with the kinetic relation (6.2) (or (6.5)). In the former event,
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(6.9) continues to hold, and the force elongation curve is ABCD (Figures
6(a,b)). However, if a (3,1)-shock forms, then the F-§ curve departs from
ABCD at a point Oy (Figure 6(a)), with

§ = 831 (F(t),s(t)). (6.10)

Here s(t) 1is the location of the shock at time t > ty; it is given by the
; solution of the differential equation (6.5) with p=3, g=1, subject to the
! initial condition s(ty) = 0. If a shock does not form and the first of the
two above alternatives occurs, the force, having generated only smooth
deformations, eventually attains the value F(t3) = o Ay, after which any
one of three mutually exclusive types of admissible response histories may
K occur. First, the fields may remain smooth, with §(t) = A1(F(t)); second, a
fi (3,1)-shock may emerge at x = 0, after which (6.10) will take over; third,
it 1is now possible to create a (1,3)-shock at x = L. If this third possi-
bility occurs , say at time t4,, the force-elongation curve will depart

from ABCDE at O4y4 (Figure 6(b)), and the F-§ relation will be

e

R

§(t) = A13(F(t),s(t)), (6.11)

instead of (6.9).

- -

The kinetic relation alone does not determine whether or when a shock
forms during the above 1loading program or, if so, whether it is a

(3,1)-shock at x = 0 or a (1,3)-shock at x = L. It is therefore necessary

; to establish in addition a criterion for ghock initiatjon. If a (3,1)-shock
o forms at x = 0 at time t; (corresponding to the point 04 in Figure 6(a)),

then the strain at the particle x = O will jump from a value associated
Iy with branch 1 of the stress-strain curve to a value on branch 3; for
‘i brevity, we say that the particle has undergone a transformation from

"phase 1" to "phase 3" at time t,. The same can be said of the particle x =
i L if a (1,3)-shock emerges from x = L at time tyy (point Ouyx in Figure
\ 6(b)). We now adopt a specific criterion for such shock-initiating - or
‘ "spontaneous" - phase 1 -+ phase 3 transformations: the particle x = x, will

spontaneously transform from phase 1 to phase 3 at time ty if the stress

o(Xx,tx) > Iy and o(+,ts) has a local maximum at xu. (6.12) f
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Here the "transformation stress" Zy 1is determined by the material and
presumed to be known. (The alternative to a spontaneous transformation
occurs when a particle changes phase due to the passage of a pre-existing
shock through that particle.) For the reverse transformation, we similarly
postulate that the particle x4 will spontaneously transform from phase 3 to

phase 1 at time ty4 if
o(Xx,tx) < I and o(+,ty) has a local minimum at x4, (6.13)

where the reverse transformation stress Z; is also given. Admissibility

requires that Iy and Z; satisfy
op <Zp S o, <Iy<oy . (6.14)

Since the bar is monotonically tapered, the maximum stress at each instant
occurs at the small end x = 0, the minimum at x = L. Thus shocks corre-
sponding to phase 1 -+ phase 3 transformations can only be initiated at x = '

0, and those corresponding to 3 - 1 transformations only at x = L. )

We remark that the shock initiation criterion introduced above can be
alternatively formulated in terms of critical values of shock driving trac-
tion, rather than in terms of the critical values Zy and I of stress at d
the shock. In the present one-dimensional context, no advantage is gained
by wusing this formulation, so we omit it. In higher dimensional settings, \

however, it is likely that the alternative formulation is essential.

When applied to the loading program described in detail above, our
criterion singles out a definite response history from among the possibili-
ties listed there: as t increases from zero, the equilibrium fields remain
smooth and the force elongation relation remains given by (6.9) until the
instant ty at which o(0,ty) = F(ty)/Ap = Zy. At time ¢ty, a (3,1)-shock

forms at x = 0. The evolution of the shock location s(t) is then con-

trolled by the differential equation (6.5) with p(t) = 3, q(t) = 1, sub-
ject to the initial condition s(ty) = 0. Under suitable restrictions on the
kinetic response function v3; to be specified in the following section, the ¢
associated force-elongation response curve, described now by (6.10), will

remain in the set 337 of (3,1)-equilibrium states; it is the curve O04P, 3
shown schematically in Figure 6(a).
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¥ As the force F(t) increases above the level associated with the point
K

' P4, the subsequent response necessarily is smooth and corresponds to
Q‘ branch-3 strains; thus the F-§ relation now becomes

s

Y

nE

) §(t) = U3(F(t),s(t)) (6.15)
;ﬁ during the remainder of the loading process.

P

t,:

ﬁ If the force F(t) is now decreased monotonically to zero from 1its

greatest value F(T), the ensuing deformation will be smooth, and the force-
vy elongation relation will be given by (6.15) until the minimum stress in the
N bar o(L,t) reaches the lower transformation stress Z,. At this instant, the
A particle x = L undergoes a 3 -+ 1 phase transformation, and a (3,1)-shock is

‘ created at x = L, moving leftward into the bar in accordance with (6.5).

o The F-§ response curve, though again described by (6.10), will differ from
gi its counterpart during loading. Once this curve rejoins OABC, the response
g; during the remainder of the unloading process 1is that associated with
?a . branch-1 smooth fields, continuing down OABC to the origin.

N

k . Finally, it should be noted that kinetic relations whose structure is
%{ substantially more general than (6.2) could be considered.

"

W

3 7. A _special class of kinetjc relations,

A We now consider a special class of kinetic response functions V in
:”' (6.2) (or v in (6.5)). After investigating some of their properties, we
S illustrate in detail the visco-plastic nature of the macroscopic response
s: of the bar to which they give rise. We discuss rate-independent dissipative
32 response and purely conservative, dissipation-free behavior in the present
4 context as well.

i .

i Since we shall be concerned only with equilibrium states accessible
3. ’ through admissible motions from the unlocaded, unextended state F = § = 0 |
§ we will not encounter strains on branch 2 of the stress-strain curve. More-
n over, for the loading programs to be considered, the shock initiation
‘ﬂ criterion of the preceding section will always rule out (1,3)-shocks. Thus

iy we shall be concerned with the kinetic relation (6.2) only when p(t) = 3,
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q(t) = 1. As a result, we shall write V3; = V, Vpq = V» M3] =M, m3} = m
throughout the present section for convenience. Recall from (4.22), (4.23)
and (6.1) that m < 0, M > O.

7.1 The e unction.

Guided in part by the form sometimes ascribed to the counterpart of the
function V in microstructural theories of plasticity [24], we now make
three assumptions concerning the form of V: (i) We assume that there are

numbers my and My such that
m<me <0< M <M (7.1
and

V(f) < 0 for m < £ < my,
V(f) = 0 for my € £ < My, (7.2)
V(E) > 0 for My < £ < M,

noting that (7.2) is consistent with the requirement (6.3) imposed by
admissibility. (ii) We assume that V(f) is continuous on (m,M) and conti-
nuously differentiable on (m,my] + [My,M), and that V'(f) > 0 form < f <
my and for My < £ < M. (iii) Finally, we assume that V(f) is unbounded as f

-+ m+ and as f +» M-; more precisely, we require that

IA

vV(£f) Cp(f - m)'l for £ sufficiently near m, } (7.3)

V(f) > Cy(M - f)'1 for f sufficiently near M,

for suitable constants Cp < 0 and Cy > O.

According to (i), a (3,1)-shock will move in the +x-direction only if
the shock driving traction exceeds My, and in the reverse direction only if
f is less than my. Permitting V(f) to vanish over the interval [my,M;] will
be seen later to allow for the possibility of dissipation-free unloading
and re-loading. Assumption (ii) assures that, roughly speaking, larger
shock tractions promote greater shock speeds. The role of property (7.3)
will become clear as we proceed. A schematic sketch of the graph of V(f) is
shown 1in Figure 7(a); it is reminiscent of the relationship sometimes pro-

posed between the driving force on a dislocation and dislocation velocity
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By (6.6), property (7.2) of V translates into a corresponding property

of v:

v(o) <0 for oy <o < a*m ,

v(og) = 0 for a*m <0< U*M , (7.4)

v(g) > 0 for U*M <o <oy,
where a*m and a*M are the unique numbers defined by
£31(0%p) = me , f31(0%y) = My . (7.5)
* *
Clearly, o™, and o'y satisfy
am<a*m5°c5‘7*M<UM s (7.6)

where o, is the Maxwell stress (Figure 1). Clearly, the two transformation

stresses Xy and ZX; assoclated with shock initiation must satisfy

Op < Zp S 0% € 00 £ 0¥y < By < oy. (7.7)

Property (7.3) of V is readily shown to imply that there are numbers o,’
and oy', with op < oy’ < a*m and ”*M < oy’ < oy, and such that

v(a) < Cm(a - am)'l for nm <0< Um'. } (7.8)

\

v(o) cyq(oy - a)'1 for oy’ <o < oM

for suitable constants cp < 0 and cy > 0 . A schematic graph of v(o) is
shown in Figure 7(b).

If ¢ stands for the inverse of the restriction of v to (am,a*m] +

[a*u.aM), version (6.5) of the kinetic relation may be put in the

alternative form
a(t) = F(t)/A(s(t)) = o(8(t)). (7.9)

Note that ¢ has a discontinuity at the origin unless a*m =0, =0 N.
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Suppose for the moment that we have a motion taking place on the time
interval ([t(,T] and involving a (3,1)-shock located at x = s(t) at time t.
As time increases, the shock location s(t) will evolve according to the

kinetic relation (6.5), which in present notation is
§(t) = v(a(t)) = v(F(t)/A(s(t))). (7.10)

Property (7.8) pguarantees that the moving point (s(t),F(t)) in the
(s,F)-plane remains in the set 33} corresponding to equilibrium states with
(3,1)-shocks. To prove this, it is sufficient to show that the stress at
the shock o(t) = F(t)/A(s(t)) never exceeds oy and is never less than o).
Suppose that, at the initial instant tg, one has gy’ < T(tg) < oy, so that
the second of the 1inequalities in (7.8) holds at time to. We shall show
that o(t) < oy for all t in [t(,T]. Suppose this were not the case. Then
there would be instants t in (tg,T] at which 7(t) = oy; let tiy be the

infimum of all such instants. Clearly
to<t1*ST, a-(t)<0M for tost<tix, and F(tl*)-aM, (7.11)

by the continuity of (t). Now let tgps be the supremum of the set of all
times t for which 5(t) < oy’ and tg < t < tjx. Then for tgsx < t < t1%, we
have oy’ < G(t) < oy, so that (7.8)9 applies, and v(o(t)) > 0, whence by
(7.10), §(t) > 0 during this time interval as well. It follows that we may
express t as a function of s: t = E(s), and thus regard EKE(S)) - 5(s) as a

function of s as well. Then by (4.17), (7.10),

¥ (s)A(s) + B(s)A’(s) = d/ds(F(E(s))) =~ F(E(s))/8(E(s))

- FRs)) /vEs)). (7.12)

Let A = max Iﬁ(t)l, tg £ t £ T, be the maximum loading rate during the
motion. Then by (7.8),, (7.12) yields

J' (S)A(s) + T(s)A'(s) < (M/ey) oy - 8(S)), Sox < s < Syx, (7.13)

where s, % = s(tgx), S81% = 8(ty4). Integration of this linear differential
inequality and using the fact that A(sgpx) < A(s) leads to
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s
F(s) S oy - (oy - ao)exp(-(k/cH)JA(x)'ldx) » Sok £ 8 £ S1%, (7.14)

SO*

with og = F(sgs). In particular, this gives F(syx) = d(t1x) < oy,
contradicting (7.11). It follows that G(t) < oy for tg < t < T. Thus the
stress o(t) at the shock in a motion governed by (7.10) never exceeds oy; a

similar argument shows that o(t) is never less than op.

7.2 Macxroscopic xesponse.

We now elucidate the nature of the macroscopic response of the bar
under various force-controlled programs of loading for the class of kinetic
relations described above. First, let F(t) = At, 0 € t £ T, corresponding
to loading at a constant rate A from the undeformed state. Assume that the
final value of force is such that F(T) > oyAy. The force-elongation
responise answering to this loading is shown schematically in Figure 8(a).
After loading begins, the point (§(t),F(t)) rises from the origin O along
the response curve OAO, associated with smooth fields of the type (4.1), so
that 6§(t) = Aj(F(t)), and there is no dissipation. When the force reaches
the level corresponding to the point Oy in Figure 8(a), the stress at x = 0
coincides with the larger transformation stress Zy, and a (3,1)-shock is
created at x = 0 according to the shock initiation criterion of the preced-
ing section. The kinetic relation (7.10) takes over, and the initial shock
velocity has the value v(Zy). By (7.7), Zy 2 a*M, so that by (7.4), v(Zy) 2
0. If Zy > a*M, then v(Zy) > 0, the initial shock velocity is positive, and
there is a discontinuity in slope in the F-§ response curve at Oy, as shown
in the figure. 1If Iy = a*M, the initial shock velocity is zero, and the
slope of the F-§ curve is continuous at O4. Under the control of (7.10),
s(t) increases with t, the elongation is given by 6§(t) = 4a37(F(t),s(t)),
and the point (§(t),F(t)) moves along the curve O4BP, both F(t) and §(t)
increasing. This stage of the process is accompanied by dissipation. When
the force has increased to the value associated with point P in Figure
8(a), the shock has arrived at the end x = L of the bar, all particles are
in phase 3, and the field is smooth. As the force continues to increase,
the response is that of smooth, dissipation-free phase-3 deformations, with
§(t) = A33(F(t)). The loading terminates at time T, corresponding to the
point Z in the figure.

Now suppose that F(t) 1is decreased at the constant rate X from its
R R RIS Nty »:--f,:m;;. NN A AN O M\ RN, : :3\'

v, y,e 0 WY
L " l [y ."v I‘;J (N Q‘Q g,l': O (% ‘t.o () '.l 5 1y 9, 9y '0. s l‘.. ." CuM e " s ¥, 0%, Wl ! Lh)



t" NI G0 \.’5 Y

"l,"\..':'l.:’ \'.v" n'l!:"’\ 'f‘.o"in W3 NC 0 1o

--30--

largest value F(T) to zero. The response curve at first follows the arc
ZPQx corresponding to smooth phase-3 fields, and the response is dissipa-
tion-free ; at Qu, the stress at the larger end x = L of the bar has dimin-
ished to the smaller transformation stress IZ;, and a leftward moving
(3,1)-shock emerges. The sign of v in (7.10) is now negative, s(t), F(t)
and 6(t) all decrease, and the arc QxCA is traced out as the shock returns
to x = 0, dissipating as it moves. As F(t) decreases to zero from its value
at A, &(t) = H1(F(t)) again along the arc A0, and the final stage of
unloading takes place without dissipation. The total dissipation in the
loading cycle 1is of course precisely the area of the hysteresis loop
AO4PQx .

If the loading rate A were changed, the loading and wunloading "yield
points" O4 and Qp would remain the same, but the arcs 04BP and Q,CA
associated with the dissipative portion of the process would change. The

macroscopic response is thus rate-dependent.

Consider now a modified version of the loading history described above
in which the force F(t), after arriving at the value associated with the
point B in Figure 8(a), is decreased, and then ultimately increased again.
Figure 8(b) shows the resulting macroscopic response. As before, the
response curve is the arc 004B during the initial loading phase, the por-
tion O4B being dissipative. When F(t) begins to decrease, v(F(t)/A(s(t))
remains positive at first, and (7.10) requires s(t) to continue to
increase, accompanied by dissipation. During this stage, §(t) will also
continue to increase, generating the arc BC of the response curve. At the
point C, the stress 7 at the shock has dropped to the value U*Mv so that by
(7.4), v(3) = 0 at the corresponding instant. If U*M > a*m in (7.4), and if
F(t) continues to decrease below its value at C, g(t) will remain in the
range for which v(d(t)) vanishes, so that §(t) = 0 and the shock remains
stationary. During this portion of the unloading process, the corresponding
part CD of the response curve lies along a curve of constant s, and there
is no dissipation. If now the force F(t) is increased, the initial portion
of the reloading process takes place along DC and is dissipation-free. If
the force ultimately increases sufficiently to raise the stress at the
shock to a value greater than O*M- the shock resumes its motion, dissipa-
tion will begin again, and the response curve will proceed along CE. This
particular force history 1illustrates the occurrence of dissipation-free

unloading with a stationary shock.
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If, during unloading in the last program, the force had been decreased
sufficiently below 1its value at D, the stress at the shock would diminish
below the value a*m, causing v(Z(t)) to become negative, forcing the shock
to move left. Figure 8(c) shows the macroscopic response curve 004BFI for
such a force history, together with the response on reloading. The arcs
00,, CE, and GH correspond to dissipation-free periods during the quasi-

static motion.

The macroscopic response of the bar during the 1loading programs just
described clearly resembles that associated with visco-plastic behavior in
several respects. One feature of the latter kind of behavior that 1is not
present here is that of permanent strain. By abandoning the requirement o
>0 in (2.9) and thus considering a stress-strain curve whose local minimum
(Figure 1) corresponds to a compressive stress oy, one can introduce

permanent strain into the macroscopic response; see [18].

7.3 Rate-independent behavjor.
The form of the kinetic response function sketched in Figure 7(b) sug-
gests consideration of the limiting case in which the function ¢ inverse to

v is a step-function as shown in Figure 9:

f s >0,
: { ™ °r 8 (7.15)

(s) =
(%) Zy for § <0,

where Zy and X, are the shock initiation stresses, op < Z; <o, < Ty < oy
and o, 1is the Maxwell stress. One shows readily that the macroscopic
response produced by the kinetic relation is rate-independent and is of the
form shown in Figure 9. If I, = oy and Ty = oy, the quasi-static motions
permitted by the kinetic relation are maximally dissipative in a definite
sense; response of this kind is discussed in detail in [17].

7.4 Dissipation-free macroscopic response.
Finally, we note that purely conservative (or dissipation-free)
response of the kind conventionally associated with elastic behavior

results from choosing the.inverse kinetic response function ¢ to be

9(8) = o, for -®m < § <o, (7.16)
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and taking both shock initiation stresses Iy and I, to be equal to the
Maxwell stress o.. In this case, the macroscopic response is independent of

past history and is as shown in Figure 10.
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